organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Vishnu Vardhan Reddy,^a A. Sivalakshmi Devi,^a K. Vyas,^a* V. Venugopal Rao,^a Y. Koteswar Rao,^a A. Venkateswarlu^a and P. K. Dubey^b

^aDiscovery Research, Dr Reddy's Laboratories Ltd, 7-1-27 Ameerpet, Hyderabad 500 016, India, and ^bDepartment of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 872, India

Correspondence e-mail: vyask@drreddys.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.076 wR factor = 0.095 Data-to-parameter ratio = 10.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

7-Nitro-1,2,3a,4-tetrahydrobenzo[b]-[1,3]oxazolo[3,2-d]oxazine: a new heterocycle

The title compound, $C_{10}H_{10}N_2O_4$, crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. The five-membered ring of the oxazole moiety adopts a halfchair conformation in molecule *A* and an envelope conformation in molecule *B*. The oxazine ring adopts a sofa conformation in both molecules. Received 21 January 2003 Accepted 18 February 2003 Online 28 February 2003

DRL Publication No. 291.

Comment

The oxazole moiety is frequently found in biologically active molecules and natural products. During the development of facile synthetic methods for compounds having this moiety, we synthesized 7-nitro-1,2,3a,4-tetrahydrobenzo-[b][1,3]oxazolo[3,2-d]oxazine, (I), for the first time.

The molecular structure of (I) is shown in Fig. 1. The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit. All the bond lengths and angles have normal values (Allen *et al.*, 1987). The five-membered ring adopts a half-chair conformation in molecule A and an envelope conformation in molecule B. The oxazine ring adopts a sofa conformation in both molecules.

C 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A perspective view of the asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Packing diagram, viewed down the c axis.

Experimental

The title compound was prepared by nitration (using fuming nitric acid) of tricyclic oxazolooxazine, i.e. 1,2,3a,4-tetrahydrobenzo-[b][1,3]oxazolo[3,2-d] oxazine, which was synthesized according to the method of Lohray et al. (2000). Crystals suitable for X-ray diffraction analysis were grown from a mixture of n-butanol and chloroform (ratio 9:1).

Crystal data

$C_{10}H_{10}N_2O_4$	$D_r = 1.518 \text{ Mg m}^{-3}$
$M_r = 222.20$	Cu Kα radiation
Monoclinic, $P2_1/c$	Cell parameters fro
a = 12.164 (2) Å	reflections
b = 22.079 (4) Å	$\theta = 25.8 - 29.5^{\circ}$
c = 7.373 (2) Å	$\mu = 1.02 \text{ mm}^{-1}$
$\beta = 100.86(2)^{\circ}$	T = 298.2 K
V = 1944.6 (6) Å ³	Block, yellow
<i>Z</i> = 8	$0.45 \times 0.30 \times 0.20$
Data collection	
Rigaku AFC-7S diffractometer	$R_{\rm int} = 0.082$
ω -2 θ scans	$\theta_{\rm max} = 70.0^{\circ}$
Absorption correction: ψ scans	$h = -14 \rightarrow 14$
(North et al., 1968)	$k = 0 \rightarrow 26$
$T_{\min} = 0.586, T_{\max} = 0.816$	$l = -8 \rightarrow 3$
4615 measured reflections	3 standard reflectio
3769 independent reflections	every 150 reflecti
3111 reflections with $I > 0.5\sigma(I)$	intensity decay: a

Refinement

Refinement on F R = 0.076wR = 0.095S=1.983111 reflections 289 parameters

ters from 25 -1 × 0.20 mm

4 eflections reflections intensity decay: ca 1.0%

H-atom parameters constrained $w = 1/[\sigma^2(F_o) + 0.00016|F_o|^2]$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \mathring{A}}^{-3}$ $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Selected geometric parameters (A, $^{\circ}$).							
O1A-N1A	1.221 (4)	O4B-C8B	1.406 (3)				
O2A - N1A	1.228 (4)	O4B - C9B	1.413 (4)				
O3A-C6A	1.383 (3)	N1A - C4A	1.446 (4)				
O3A-C7A	1.426 (3)	N2A - C8A	1.446 (4)				
O4A - C8A	1.399 (3)	N2A - C1A	1.354 (3)				
O4A-C9A	1.433 (4)	N2A-C10A	1.455 (3)				
O1B-N1B	1.231 (3)	N1B-C4B	1.438 (3)				
O2B-N1B	1.231 (3)	N2B-C1B	1.371 (3)				
O3B - C6B	1.371 (3)	N2B-C8B	1.453 (3)				
O3B-C7B	1.432 (3)	N2B-C10B	1.458 (3)				
C64 - 034 - C74	112 74 (19)	034 - C64 - C14	1199(2)				
C84 - 044 - C94	112.74(1)	034 - C64 - C54	119.9(2) 118.2(2)				
C6B = O3B = C7B	113 23 (18)	$O_{3A} - C_{7A} - C_{8A}$	110.2(2) 110.0(2)				
C8B - O4B - C9B	105.7(2)	O4A - C8A - N2A	1055(2)				
O1A - N1A - C4A	1189(2)	04A - C8A - C7A	110.9(3)				
O1A - N1A - O2A	122.8 (3)	N2A - C8A - C7A	110.5(2)				
O2A - N1A - C4A	118.3 (3)	O4A - C9A - C10A	104.8(2)				
C8A-N2A-C10A	109.3 (2)	N2A-C10A-C9A	101.5 (3)				
C1A-N2A-C10A	126.7 (2)	N2B-C1B-C2B	122.5 (2)				
C1A - N2A - C8A	121.0 (2)	N2B-C1B-C6B	118.3 (2)				
O2B - N1B - C4B	118.65 (19)	N1B-C4B-C3B	119.5 (2)				
O1B - N1B - O2B	122.1 (2)	N1B-C4B-C5B	118.28 (19)				
O1B-N1B-C4B	119.2 (2)	O3B - C6B - C1B	120.96 (18)				
C1B-N2B-C10B	124.4 (2)	O3B-C6B-C5B	118.56 (19)				
C8B-N2B-C10B	110.2 (2)	O3B-C7B-C8B	109.7 (2)				
C1B-N2B-C8B	120.67 (19)	O4B-C8B-N2B	105.2 (2)				
N2A - C1A - C2A	123.2 (2)	O4B-C8B-C7B	112.0 (2)				
N2A - C1A - C6A	119.1 (2)	N2B-C8B-C7B	110.5 (2)				
N1A - C4A - C5A	118.4 (2)	O4B-C9B-C10B	107.2 (2)				
N1A - C4A - C3A	119.6 (2)	N2B-C10B-C9B	100.7 (3)				

Table 2 Hydrogen-bonding geometry (Å, °).

Table 1

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3A - H2A \cdots O2B^{i}$	0.95	2.42	3.200 (3)	140
$C5B-H3B\cdots O3A$	0.95	2.59	3.517 (3)	165
$C7A - H5A \cdots O1B$	0.95	2.54	3.222 (4)	129
$C8A - H6A \cdots O2B^{ii}$	0.95	2.57	3.325 (4)	136

Symmetry codes: (i) 1 + x, y, z; (ii) -x, -y, 1 - z.

H atoms were included in calculated positions and refined using a riding model, with C-H = 0.95 Å.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

The authors acknowledge Dr Manojit Pal for useful discussions, and Dr R. Rajagopalan and Dr K. Anji Reddy for their interest and encouragement in this work.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

- Lohray, B. B., Bhushan, V., Reddy, A. S. & Rao, V. V. (2000). Indian J. Chem. Sect. B, **39**, 297–299.
- Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Present address: MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.)
- Molecular Structure Corporation (1995). TEXSAN. Version 1.7-2. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Present address: MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.)
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.